8 resultados para spliced leader gene

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No fully effective treatment has been developed since the discovery of Chagas' disease by Carlos Chagas in 1909. Since drug-resistant Trypanosoma cruzi strains are occurring and the current therapy is effectiveness in the acute phase but with various adverse side effects, more studies are needed to characterize the susceptibility of T. cruzi to new drugs. Many natural and/or synthetic substances showing trypanocidal activity have been used, even though they are not likely to be turned into clinically approved drugs. Originally, drug screening was performed using natural products, with only limited knowledge of the molecular mechanism involved in the development of diseases. Trans-splicing, which is unusual RNA processing reaction and occurs in nematodes and trypanosomes, implies the processing of polycistronic transcription units into individual mRNAs; a short transcript spliced leader (SL RNA) is trans-spliced to the acceptor pre-mRNA, giving origin to the mature mRNA. In the present study, permeable cells of T. cruzi epimastigote forms (Y, BOL and NCS strains) were treated to evaluate the interference of two drugs (hydroxymethylnitrofurazone - NFOH-121 and nitrofurazone) in the trans-splicing reaction using silver-stained PAGE analysis. Both drugs induced a significant reduction in RNA processing at concentrations from 5 to 12.5 µM. These data agreed with the biological findings, since the number of parasites decreased, especially with NFOH-121. This proposed methodology allows a rapid and cost-effective screening strategy for detecting drug interference in the trans-splicing mechanism of T. cruzi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No fully effective treatment has been developed since the discovery of Chagas' disease. Since drug-resistant Trypanosoma cruzi strains are occurring and the current therapy is effective in the acute phase but with various adverse side effects, more studies are needed to characterize the susceptibility of T. cruzi to new drugs. Pre-mRNA maturation in trypanosomatids occurs through a process called trans-splicing, which is unusual RNA processing reaction, and it implies the processing of polycistronic transcription units into individual mRNAs; a short transcript spliced leader (SL RNA) is trans-spliced to the acceptor pre-mRNA, giving origin to the mature mRNA. Cubebin derivatives seem to provide treatments with less collateral effects than benznidazole and showed similar or better trypanocidal activities than benznidazole. Therefore, the cubebin derivatives ((-)-6,6′-dinitrohinokinin (DNH) and (-)-hinokinin (HQ)) interference in the mRNA processing was evaluated using T. cruzi permeable cells (Y and BOL (Bolivia) strains) following by RNase protection reaction. These substances seem to intervene in any step of the RNA transcription, promoting alterations in the RNA synthesis, even though the RNA processing mechanism still occurs. Furthermore, HQ presented better activity against the parasites than DNH, meaning that BOL strain seems to be more resistant than Y. © 2011 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human ZC3H14 gene encodes an evolutionarily conserved Cys(3)His zinc finger protein that binds specifically to polyadenosine RNA and is thus postulated to modulate post-transcriptional gene expression. Expressed sequence tag (EST) data predicts multiple splice variants of both human and mouse ZC3H14. Analysis of ZC3H14 expression in both human cell lines and mouse tissues confirms the presence of multiple alternatively spliced transcripts. Although all of these transcripts encode protein isoforms that contain the conserved C-terminal zinc finger domain, suggesting that they could all bind to polyadenosine RNA, they differ in other functionally important domains. Most of the alternative transcripts encode closely related proteins (termed isoforms 1, 2. 3, and 3short) that differ primarily in the inclusion of three small exons, 9, 10, and 11, resulting in predicted protein isoforms ranging from 82 to 64 kDa. Each of these closely related isoforms contains predicted classical nuclear localization signals (cNLS) within exons 7 and 11. Consistent with the presence of these putative nuclear targeting signals, these ZC3H14 isoforms are all localized to the nucleus. In contrast, an additional transcript encodes a smaller protein (34 kDa) with an alternative first exon (isoform, 4). Consistent with the absence of the predicted cNLS motifs located in exons 7 and 11, ZC3H14 isoform 4 is localized to the cytoplasm. Both EST data and experimental data suggest that this variant is enriched in testes and brain. Using an antibody that detects endogenous ZC3H14 isoforms 1-3 reveals localization of these isoforms to nuclear speckles. These speckles co-localize with the splicing factor, SC35, suggesting a role for nuclear ZC3H14 in mRNA processing. Taken together, these results demonstrate that multiple transcripts encoding several ZC3H14 isoforms exist in vivo. Both nuclear and cytoplasmic ZC3H14 isoforms could have distinct effects on gene expression mediated by the common Cys(3)His zinc finger polyadenosine RNA binding domain. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)